Considerations for Wheelchair Seating and Positioning for the Older Adult- An Introduction

Colleen DeRitis, MA, OTR/L, ACE-CPT, COS-C, LSVT-Big

Expectations from Wheeled Mobility...

Therapist
Patient
Insurance company
Society

Sitting is a developmental process

- Prop sitting
- Sitting with hands free
- Round back sitting
- Straight back sitting
- Ring sitting
- Tailor sitting
- Long sitting
- Side sitting
- Sit independently
Physiological changes as we age

Musculoskeletal and Neuromuscular

- Decreased joint flexibility
- Decreased mass and strength
- Decreased reaction time
- Increased postural sway
- Decreased nerve conduction velocity and reaction time

Integumentary

- Moisture content decreases
- Epidermis separates more easily
- Decreases in sweating, wound healing and thermal regulation
- Decreased pain perception
- Collagen changes
Cardiopulmonary

- Decreased lung capacity
- Decreased cardiac output
- Changes in responses to stress
- Orthostatic hypotension

Sitting involves an unstable structure

- Design of our bodies
- Upright postures
- Muscles help to balance

Stability, Function, and Comfort

- Stability = Balance
- Comfort = Pressure Relief

- What makes us sit a certain way?
- Instability results in compensation
Upright sitting position facilitates:

- Musculoskeletal Integrity
 - Prevent contractures
- Self Care, Work and Leisure
 - Independence
- Social Interaction and Communication
 - Increase respiratory support for speaking
 - Increase position for alternative communication

What is positioning?

- How one attains and maintains:
 - Lying or sitting in bed
 - Lying or sitting in a wheelchair or everyday chair
 - Standing or walking

Something to think about...

- What happens when you flex your hip?
- What happens when you sit in the wheelchair and put your hip into 90°?
Resulting complications of poor posture:
- Contractures and deformities
- Tissue breakdown
- Masked ability
- Reduced performance and tolerance
- Infection, UTI, Respiratory insufficiency
- Fatigue and discomfort
- Function

Biomechanical Considerations
- Prevent orthopedic complications
- Maintain vital organ capacity
- Reduce soft tissue strain
- Comfort
- Increase endurance and tolerance

Instead of 90/90/90...
- Consider
 - Function
 - Comfort
 - Stability and balance
 - Joint range of motion
 - Flexibility
 - Tone/reflexes/spasticity
 - Individuality
The Wheelchair

- Improper equipment can be a frequent cause of positioning issues:
 - Chairs
 - Backrests
 - Armrests
 - Footrests
 - Other

Biomechanics Considerations

- Ideal position is balanced position of muscle groups
 - Axle in alignment with shoulder
 - Seat width
 - Camber
 - Seat angle
 - Seat to floor height
- Standing

Additional Risks and Considerations

- Fatigue-ability of the patient
- Repetitive Strain Injuries
 - Shoulder pain- want the shoulder to be positioned properly
 - Rotator cuff tears
 - Aseptic necrosis
 - Wrist Pain
 - Carpal Tunnel Syndrome
- Pressure ulcer
Complications of continuous sitting...

- Osteoporosis
- Pressure ulcers
- Deformities
- Atrophy/contractures
- UTI’s
- Spasticity
- GI complications
- Orthostatic hypotension

Standing can be functional

- Reach shelves
- Cooking
- Light switches
- Payphones
- Vending machines
- Transfers
- Shopping
- Exercise

OPTIMAL POSITIONING
Optimal Sitting Position

- Symmetrical alignment laterally to midline
- The spine is aligned to the normal cervical, thoracic, and lumbar curves or "S"-shape
- No pelvic rotation nor obliquity
- Slight anterior tilt is present
- The hips at a 90-degree angle, slightly abducted, and without rotation
- Weight bearing evenly distributed over ischial tuberosities
- Elbows rest comfortably on the armrests or lap tray
- Shoulders relaxed and depressed
- Head Position midline with slight neck extension and neutral chin

Benefits of Maintaining Optimal Position

- Increased level of arousal
- Improved vital functions
- Skin integrity maintained
- Improved visual tracking
- Perception improved
- Muscle Tone normalized

Positioning
Positioning principles and goals

- Goal: maintain joints in a position that is as close to the normal anatomical position as possible
 - results in less joint strain and stress
- Proximal joint stability allows movement distally

Pelvic Tilt

- Posterior Pelvic Tilt
- Anterior Pelvic Tilt
- Pelvic Obliquity

Pelvic tilt

Pelvis leans forward.

Posterior pelvic tilt
Pelvis leans backward.
“sacral sitting”
Posterior Pelvic Tilt

- Clinical considerations:
 - Trunk muscle strength
 - Limited hip flexion
 - Abnormal tone
 - Tight hamstrings
 - Increased thoracic kyphosis

Anterior Pelvic Tilt

- Clinical considerations:
 - Tight hip flexors, quadriceps
 - Weak abdominals
 - Obesity
 - Increased lumbar lordosis
Pelvic Obliquity

- One side of pelvis is higher than other side during sitting
- Due to abduction of one hip and adduction of the other
- "windswept deformity"

Pelvic Obliquity

- Clinical considerations:
 - Asymmetrical muscle strength, tone, soft tissue/muscle mass
 - Scoliosis
Pelvic Rotation

- Pelvis twisted toward one side of the body.
- Appears as a leg length discrepancy due to position of the knees in sitting.

Pelvic Obliquity / Rotation

- **Obliquity:** resulting from asymmetries due to trunk strength or tone, pelvis, soft tissue or muscle mass, hip flexion, Scoliosis
- **Rotation:** resulting from asymmetrical hip abduction/adduction, leg length discrepancy, posterior dislocated or subluxed hip, muscle tone, use of one foot to propel

Lordosis

- Excessive spinal curvature in the lumbar area.
Kyphosis

- Spine curves outward at the chest area.

Wheelchair measurements

How to Measure for the Proper Chair

- Guidelines provided are just that
- Need to address individual concerns
Seat \rightarrow Floor Height

- Arms should be able to reach rear axle
- If lower to floor, will allow for foot propulsion
- Consider drop seat if needed
- Under distal thigh to heel of commonly used shoe
- Allow 2 inch clearance for footrests
- Seat cushion changes the height as well

Seat Depth

How to measure:
- Most posterior part of buttocks is start point
- Measure to popliteal fossa of each knee
- Subtract 2 inches

Considerations:
- Need to be aware of leg length discrepancies
Seat Width

- Widest point across the hips/thighs
- Add 2 inches (5cm)
- May change the overall width of chair

Back Height

- Seat surface to:
 - Mid-back just under scapula
 - Mid-scapula or axilla
 - Top of shoulder
- Based on need for:
 - Postural stability
 - Arm swing
 - Shoulder girdle should be free to move

General Seating Standards

- Seat Height
 - Should be equal to lower leg length from popliteal fossa to heel (in shoe)
 - Need to ensure cushion is in place when measuring
- Armrest Height
 - 1 inch to the distance from the seating surface to the axilla when arm is at side
- Back height
 - Same as the distance from seating surface to mid scapula in standard situations
 - Approximately 4 inches between armpit and top of back of upholstery
- Seat Width
 - 1.5 to 2 inches wider than hips at widest point
- Seat Depth
 - 2 to 3 inches less than the distance from back of buttocks to popliteal fossa (when measuring, ensure hip is flexed at or near 90 degrees and trunk is upright)
Common Wheelchair Types

<table>
<thead>
<tr>
<th>Types</th>
<th>Width</th>
<th>Depth</th>
<th>Back Height</th>
<th>Floor to Seat Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Adult</td>
<td>18”</td>
<td>16”</td>
<td>33 ½” to 36”</td>
<td>19 ½”</td>
</tr>
<tr>
<td>Narrow Adult</td>
<td>16”</td>
<td>16”</td>
<td>33 ½” to 36”</td>
<td>19 ¾”</td>
</tr>
<tr>
<td>Bariatric</td>
<td>Up to 34”</td>
<td>20”</td>
<td>Up to 36”</td>
<td>17 ½” to 19 ½”</td>
</tr>
<tr>
<td>Hemi-Height</td>
<td>18”</td>
<td>16”</td>
<td>33 ½” to 36”</td>
<td>17 ½”</td>
</tr>
<tr>
<td>Reclining</td>
<td>18”</td>
<td>17”</td>
<td>Up to 52 1/2”</td>
<td>21 ¾”</td>
</tr>
</tbody>
</table>

Seat Cushion Requirements

- Function
- Comfort
- Low Weight
- Easy to use
- Maintenance
- Stability
- Pressure Relief

Seating Considerations

- Off the shelf
 - No adjustment
- Custom
- Modular
Factor to Consider with Cushion Selection

- Pressure redistribution
- Temperature/Moisture/Incontinence
- Stability
- Shear
- Pressure Ulcers
- Medical co-morbidities
- Compliance/cognition

Cushion Properties and Types

- Pressure distribution
- Stability
- Interface temperature
- Reliability

 - Solid base
 - Foam
 - Viscous fluid
 - Air flotation

Solid Base

- Good stability
- Wood insert
Foam

• Flat Foam
• Contoured
• Light, economical
• Most sitting stability
• Can absorb moisture but causes heat buildup
• Can minimally inhibit function
• Least affective for pressure distribution
• Easy to maintain

Gel

• Heavy
• More expensive
• Good pressure distribution
• Moderate sitting stability
• Can cause moisture, however reduces heat distribution
• Most effective for minimizing shear (active patients)
• Can moderately inhibit function
• Relatively easy to maintain

Foam and Gel Cushions
Air

- Relatively Heavy
- Expensive
- Best pressure reduction
- Least sitting stability
- Can cause moisture buildup
- Can inhibit function
- Difficult to maintain

Screening for seating and positioning

Screening process is completed:

- Upon admission to a SNF
- Referral
- Quarterly / annually
- Identification/requested by the patient/family
- Decline in status
Positioning screen:

- Conduct Interviews
- Observe
 - In bed
 - In wheelchair
 - During functional tasks
 - Mealtime
 - Activities
 - Signs and symptoms common to referral

Areas to screen

- Related to positioning concerns may include (but are not limited to):
 - Impaired strength
 - Skin integrity
 - Impaired sensation
 - Contractures
 - Restraints
 - Falls
 - Ambulation status/ balance ability
 - Changes in proprioception
 - Amputations
 - Deconditioned status

Mat Evaluation

1. Observation
2. Supine Position
3. Sitting Position
4. Body Measurements

Mat Eval Part 1
Mat Eval Part 2
Measuring 101- Mat eval

SEAT WIDTH: A
- Add an extra inch to each side to allow movement and any extra width to allow for bulky clothing if appropriate
- Measure widest width for windswept hips

SEAT DEPTH: B
- Behind Hips / Popliteal Fossa
- Subtract two inches

SEAT HEIGHT: C
- Popliteal Fossa / Heel

FOOT PLATE: D
- Heel / Toe

Measuring

BACK HEIGHT:
- Sitting surface / lower scapula – E
- Sitting surface / top of shoulders – F

• WIDTH Across head height across head – G
• High Back Rest – sitting surface / crown of head – H
• Armrests – sitting surface / hanging elbow – I
• Width across trunk – J
• Trunk depth – K

Body Measurements for wheelchair fitting
Questions?